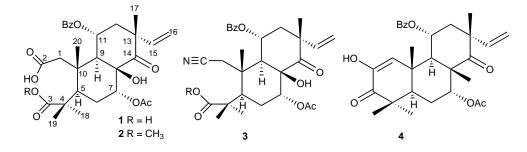


Seconthosiphols A–C: three highly oxygenated seconsopimarane-type diterpenes from *Orthosiphon stamineus*

Suresh Awale,^a Yasuhiro Tezuka,^a Seikichi Shimoji,^b Kazuhiko Taira^c and Shigetoshi Kadota^{a,*}


^aInstitute of Natural Medicine, Toyama Medical and Pharmaceutical University, 2630-Sugitani, Toyama 930-0194, Japan ^bOkinawa Health Food Development Cooperatie, 1075 Tsuhako aza Sashiki, Okinawa 901-1414, Japan ^cFaculty of Education, University of the Ryukyus, 1-Senbaru, Nishihara-cho, Okinawa 903-0129, Japan

Received 12 November 2001; accepted 21 December 2001

Abstract—Three new highly oxygenated 2,3-secoisopimarane-type diterpenes, named secoorthosiphols A (1), B (2) and C (3), have been isolated as extremely minor constituents from the aerial parts of the *Orthosiphon stamineus* from Okinawa. A unique unprecedented structural feature of such a ring A opened system in newly isolated compounds was encountered for the first time in isopimarane-type diterpenes. Secoorthosiphol C (3) represents the first example of a biogenetically unique and unconventional secoisopimarane-type diterpene having a cyano group. © 2002 Elsevier Science Ltd. All rights reserved.

Orthosiphon stamineus is an important traditional folk medicine extensively used in Southeast Asia.¹⁻³ In our search for cancer antiproliferative agents from natural sources, we have previously isolated a series of highly oxygenated isopimarane-type diterpenes and the diterpenes with a novel carbon framework named 'staminane' from O. stamineus of Vietnam and Myanmar.⁴⁻⁷ However, there are no reports on the staminane-type diterpenes in O. stamineus from Okinawa.8 Thus, we have investigated the constituents of O. stamineus cultivated in Okinawa and isolated three new highly oxygenated 2,3-secoisopimarane-type diterpenes named secoorthosiphols A-C (1-3) as extremely minor constituents (yields from methanolic extract: 1, 0.00084%; 2, 0.000061%; 3, 0.00014%), together with three staminane-type and five isopimarane-type diterpenes. We herein report the isolation and structure elucidation of the new 2,3-secoisopimarane-type diterpenes 1-3 by spectroscopic and chemical means.

Secoorthosiphol A (1) was obtained as a colorless amorphous solid and showed $[\alpha]_{D}^{25}$ -155.6° (c 0.5, CHCl₃). Its molecular formula was determined by HR-FABMS to be $C_{29}H_{36}O_{10} [m/z 543.2272 (M-H)^{-}]$. The IR spectrum of 1 showed the absorptions due to hydroxyl (3550 cm⁻¹), ester carbonyl (1710 cm⁻¹) and phenyl (1600, 1420 cm⁻¹) groups. The ¹H NMR spectrum of 1 (Table 1) revealed signals due to four tertiary methyls ($\delta_{\rm H}$ 1.15, 1.20, 1.11, 1.26), a vinyl ($\delta_{\rm H}$ 5.92, 5.15, 4.96), two oxygen-substituted methine ($\delta_{\rm H}$ 5.34, 5.53) and three aliphatic methylene groups ($\delta_{\rm H}$ 2.63, 2.17; 2.08, 2.04; 2.54, 2.06), together with those of one acetyl and one benzoyl group. The ¹³C NMR spectrum (Table 1) indicated the presence of a ketone, two acid carbonyl, two ester carbonyl and three oxygen-substituted carbons. The partial structures (bold line) obtained from the ¹H-¹H COSY and HMQC spectra were connected based on the long-range correlations observed in the HMBC spectrum (Fig. 1). Significant

* Corresponding author. Tel.: +81-76-434-7625; fax: +81-76-434-5059; e-mail: kadota@ms.toyama-mpu.ac.jp

^{0040-4039/02/\$ -} see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)00037-0

Table 1. ¹H and ¹³C NMR data for compounds 1–3 in CDCl₃ (J values in parentheses)

Position	1		2		3	
	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{\rm H}$	$\delta_{ m C}$	$\delta_{\rm H}$	$\delta_{\rm C}$
1	2.63 d (20.3)	39.7	2.32 d (20.3)	39.5	2.57 d (18.2)	
	2.17 d (20.3)		2.22 d (20.3)		2.28 d (18.2)	29.3
2		176.8		171.1		
3		185.6		179.1		117.8
4		44.8		45.3		181.3
5	3.08 dd (12.7, 3.1)	40.6	3.05 dd (15.2, 2.7)	41.0	2.58 dd (15.2, 2.6)	46.5
6	2.08 m	22.8	2.07 m	23.4	2.16 td (15.2, 2.6)	42.7
	2.04 m		1.98 dt (15.2, 2.7)		1.97 dt (15.2, 2.6)	24.5
7	5.34 br s	71.2	5.30 t (2.7)	71.0	5.31 br s	
8		75.0		75.0		70.2
9	3.58 d (7.1)	42.5	3.78 d (7.3)	41.4	3.11 d (7.3)	74.6
10		44.2		44.2		44.3
11	5.53 t (7.1)	69.3	5.60 dd (7.3)	69.3	5.64 t (7.3)	44.2
12	2.54 dd (15.4, 7.1)	39.4	2.53 dd (15.6, 7.3)	39.0	2.58 dd (18.1, 7.3)	68.7
	2.06 d (15.4)		2.09 m		2.14 d (18.1)	39.4
13		47.8		47.8		
14		209.2		209.3		47.8
15	5.92 dd (17.6, 10.8)	140.7	5.95 dd (17.6, 10.8)	140.4	6.01 dd (17.8, 10.7)	208.6
16	5.15 d (10.8)	114.4	5.15 d (10.8)	114.5	5.22 d (10.7)	140.0
	4.96 d (17.6)		4.98 d (17.6)		4.99 d (17.8)	115.2
17	1.15 s	25.6	1.18 s	25.5	1.19 s	
18 ^a	1.20 s	28.8	1.18 s	27.9	1.29 s	25.7
19 ^a	1.11 s	21.9	1.20 s	23.5	1.35 s	25.3
20	1.26 s	20.9	1.20 s	19.9	1.30 s	23.2
7-OAc						18.7
COCH ₃	2.07 s	20.7	2.09 s	20.9	2.06 s	
COCH ₃		169.6		169.3		20.8
11-OBz						169.4
1′		130.3		131.2		
2′,6′	7.80 d (8.1)	129.4	8.03 dd (7.6, 1.5)	129.5	8.20 d (7.5)	129.4
3′,5′	7.34 t (8.1)	128.3	7.46 t (7.6)	128.5	7.50 t (7.5)	130.2
4′	7.50 t (8.1)	132.9	7.58 tt (7.6, 1.5)	133.2	7.61 t (7.5)	128.6
СО		165.5		165.5		133.7
3-O <u>C</u> H ₃			3.57 s	52.0		165.8

^a Assignments were based on the ¹³C NMR chemical shift values of isopimarane-type diterpenes obtained from *O. stamineus*. The C-18 resonates always at lower field than C-19.⁴⁻⁷

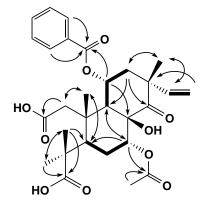


Figure 1. Partial structures (bold line) and key HMBC correlations (arrows) in 1.

correlations were observed between the ester carbonyl carbon at $\delta_{\rm C}$ 169.6 (7-OCO) and the protons at $\delta_{\rm H}$ 2.07 (7-OCOCH₃) and $\delta_{\rm H}$ 5.34 (H-7) and between the ester carbonyl carbon at $\delta_{\rm C}$ 165.5 (11-OCO) and the phenyl

protons at $\delta_{\rm H}$ 7.80 (H-2',6') and $\delta_{\rm H}$ 5.53 (H-11), allowing the locations of the benzoyl and acetoxyl groups to be at C-11 and C-7, respectively. Thus, the structure of secoorthosiphol A was concluded to be represented by the structure **1**.

The ring A dicarboxylic nature of 1 was further confirmed by treatment of 1 with diazomethane to give the dimethyl ester: $\delta_{\rm H}$ 3.53, 2.96; $\delta_{\rm C}$ 51.8, 50.0; FABMS m/z 571 (M–H)⁻.

The relative stereochemistry of **1** was determined by coupling constants and ROESY experiment (Fig. 2). The large coupling constants for H-5 ($J_{5,6ax}$ =12.7), H-9 and H-11 ($J_{9,11}$ =7.1) indicated them to be axial, while the small *J* values for H-7 ($J_{6eq,7}$ =2.4 Hz, $J_{6ax,7}$ =0 Hz) indicated its equatorial nature. In the ROESY spectrum, significant correlations were observed between H₃-20 and H-11, between H-5 and H-9 and between H-11 and H₃-17 as depicted in Fig. 2. These data suggested that rings B and C should have chair conformation.

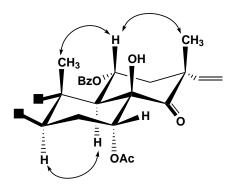


Figure 2. Key ROESY correlations in 1.

The ¹H and ¹³C NMR spectra of secoorthosiphol B⁹ (2) were almost superimposable to those of 1 (Table 1), except for the presence of one additional methoxyl signal ($\delta_{\rm H}$ 3.75, $\delta_{\rm C}$ 52.0). This was consistent with the molecular formula C₃₀H₃₈O₁₀ determined from HR-FABMS [m/z 557.2385 (M–H)⁻]. The location of the methoxy group was determined to be at the position 3 based on the significant HMBC correlations between the ester carbonyl carbon at $\delta_{\rm C}$ 179.0 (C-3) and the methoxyl protons at $\delta_{\rm H}$ 3.57 (-OCH₃) and two tertiary methyl protons ($\delta_{\rm H}$ 1.18, 1.20) assigned for H₃-18 and H₃-19. In conclusion, **2** was determined as 3-*O*-methyl-ate of secoorthosiphol A (1).

Secoorthosiphol C (3)¹⁰ was obtained as a colorless amorphous solid and displayed $[\alpha]_{D}^{25}$ -99.6° (c 0.05, CHCl₃). The quasimolecular ion $(M-H)^{-}$ at m/z524.2281 in the HR-FABMS indicated the presence of one nitrogen atom in 3 and is consistent with the molecular formula $C_{29}H_{36}NO_8$. The IR spectrum of 3 showed a characteristic sharp absorption for the cyano group (2250 cm⁻¹) together with the absorptions for hydroxyl, ester carbonyl and phenyl groups. The ¹H NMR spectrum of 3 was identical to that of 1. Comparison of the ¹³C NMR spectrum showed that, except for the upfield shift of the signal for the carboxyl group $(\delta_{\rm C} 176.8, \text{ C-2})$ of **1** to $\delta_{\rm C} 117.8$ in **3**, the remaining carbon signals were also identical. In the HMBC experiment, this carbon was correlated with the protons at $\delta_{\rm H}$ 2.57 and 2.28 (H₂-1), suggesting the location of the cyano group in the position 2. Thus, seconthosiphol C was determined to have the structure formula 3.

To the best of our knowledge, seconthosiphols A–C (1–3) are the first examples of 2,3-secoisopimarane-type diterpenes, which may be produced through an oxidative cleavage of the C_2 – C_3 bond of orthosiphol E (4),¹¹

Acknowledgements

This work was supported in part by a Grant-in-Aid for International Scientific Research (No.13576027) from The Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

- Burma Medical Research Institute, Yangon. Ministry of Health, Health and Myanmar Traditional Medicine. Burmese Indigenous Medicinal Plants: 1. Plants With Reputed Hypoglycemic Action; Bwin, D. M.; Gwan U. S.; Eds.; 1967; pp. 126–128.
- PT Eisai Indonesia. Medicinal Herb Index in Indonesia, 2nd ed.; 1995; pp. 263.
- WHO Regional Office for the Western Pacific Manila and Institute of Material Medica Hanoi. *Medicinal Plants in Viet Nam*; Tran, K., Ed.; Science and Technology Publishing House: Hanoi, 1970; p. 271.
- Stampoulis, P.; Tezuka, Y.; Banskota, A. H.; Tran, K. Q.; Saiki, I.; Kadota, S. *Tetradedron Lett.* **1999**, 40, 4239–4242.
- Stampoulis, P.; Tezuka, Y.; Banskota, A. H.; Tran, K. Q.; Saiki, I.; Kadota, S. Org. Lett. 1999, 1, 1367–1370.
- Tezuka, Y.; Stampoulis, P.; Banskota, A. H.; Awale, S.; Tran, K. Q.; Saiki, I.; Kadota, S. *Chem. Pharm. Bull.* 2000, 48, 1711–1719.
- Awale, S.; Tezuka, Y.; Banskota, A. H.; Kouda, K.; Tun, K. M.; Kadota, S. J. Nat. Prod. 2001, 64, 592–596.
- Masuda, T.; Masuda, K.; Shiragami, S.; Jitoe, A.; Nakatani, N. *Tetrahedron* 1992, 48, 6787–6792.
- 9. Secoorthosiphol B (2): Colorless amorphous solid, $[\alpha]_{25}^{25}$ -340.6° (*c* 0.05, CHCl₃). IR ν_{max} 3550, 1710, 1600, 1420, 1370, 1280, 1110, 1050 cm⁻¹. HR-FABMS 557.2385 [calcd for C₃₀H₃₇O₁₀ (M–H)⁻, 557.2387].
- 10. Seconthosiphol C (3): Colorless amorphous solid, $[\alpha]_{D}^{2D}$ -99.6° (*c* 0.05, CHCl₃). IR ν_{max} 3550, 2250, 1710, 1600, 1420, 1370, 1280, 1110, 1050 cm⁻¹. HR-FABMS 524.2281 [calcd for C₂₉H₃₈NO₈ (M–H)⁻, 524.2284].
- 11. Takeda, Y.; Matsumoto, T.; Terao, H.; Shingu, T.; Futatsuishi, Y.; Nohara, T. *Phytochemistry* **1993**, *33*, 411–415.